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ABSTRACT

An increase in seismic velocity with depth is a common
rock property, one that can be encountered practically every-
where. Overburden pressure increases vertical stress, pro-
ducing a nonlinear elastic response. Application of a
conventional nonlinear theory to this problem leads to trans-
verse isotropy, with explicit relationships between nonlinear
constants and elastic anisotropy parameters. These relation-
ships can be used in velocity “depth trend” removal and in
computing offset-dependent corrections for stacking and
migration. Assumptions about small static stress and the
use of linearized solutions for its evaluation are invalid
for overburden problems — more accurate approximations
are required. Realistic tomography models should account
for elastic anisotropy as a basic feature. Our theory gives an
accurate fit to well and stacking velocity data for the Los
Angeles Basin. Overburden stress is a likely cause of
shear-wave generation by underground explosions.

INTRODUCTION

Increasing seismic velocity with depth is traditionally attributed
to a “compaction” of rock caused by overburden pressure (Giles
et al., 1998). It is assumed that this compaction is associated not
just with porosity changes, which presumably decrease velocity be-
cause of the increase in rock density, but rather with some chemical
reactions and solid precipitation. However, measurements suggest
that velocity consistently increases at all scales starting from tens of
meters regionally and extending down to mantle depths, where it
exceeds 12 km∕s. High velocity gradients at the shallow subsurface
act as horizontal waveguides, trapping wave energy and generating
increased seismic noise.
Knowledge about velocity distribution is critically important for

our ability to image subsurface structures, focus seismic energy at

desired points, and retrieve information about underground rock.
There is growing evidence that velocity is anisotropic, which has
traditionally been explained by the layering that results from geo-
logic sedimentation processes or by a system of fractures with a
preferable orientation. It is known that, under high strain, rock
elasticity behaves nonlinearly, and this nonlinearity can induce
anisotropy (Hughes and Kelly, 1953; Thurston and Brugger,
1964; Thurston, 1965; Nur and Simmons, 1969; Sinha, 1982; Eber-
hart-Phillips et al., 1989; Norris et al., 1994; Johnson and Rasolo-
fosaon, 1996; Winkler et al., 1998; Fuck and Tsvankin, 2009;
Herwanger and Horne, 2009). It is also known that rock stresses
can have a tectonic or artificial (laboratory) source. However, the
effect of overburden pressure when rock is subjected to a gravita-
tional force caused by an overlying rock mass has not yet been ana-
lytically estimated. A single numerical result for this problem is
shown in Lei et al. (2012). Here, we apply the equations of five-
constant (isotropic) nonlinear elasticity theory to evaluate the effect
of overburden pressure on seismic velocity. These equations will
first be solved for a distribution of the nonlinear static strain field;
then, the result will be used to estimate its effect on the propagation
of seismic waves. It will be shown that the overlying rock causes
significant transverse isotropy, which explains the observed in-
crease in P- velocity with depth. The effect of shear-wave genera-
tion by an explosive source in such a medium will also be evaluated.

DYNAMIC AND STATIC FIELD COMPONENTS

We consider a nonlinear elastic medium with Lamé parameters λ,
μ, and density ρ originally described by Murnaghan (1951). His
theory requires the introduction of three third-order elastic
(TOE) constants A, B, and C, using the notation of Landau and Lif-
shitz (1953). In an unstressed state, the medium is isotropic. We are
interested in the effective properties of the medium when it is
subjected to a static (time-invariable) stress.
Assuming that the elastic deformation in a solid with displace-

ment vector,
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u ¼ uðx; y; zÞ ¼ uðx1; x2; x3Þ; (1)

is continuous, together with its spatial derivatives, the stress com-
ponents have the form (Zarembo and Krasilnikov, 1966),

σik ¼ λ
∂us
∂xs

δik þ μ

�
∂ui
∂xk

þ ∂uk
∂xi

�

þ
�
μþ A

4

��
∂us
∂xi

∂us
∂xk

þ ∂uk
∂xs

∂ui
∂xs

þ ∂us
∂xk

∂ui
∂xs

�

þ ðBþ λÞ
2

��
∂us
∂xj

�
2

δik þ 2
∂ui
∂xk

∂us
∂xs

�
þ A

4

∂uk
∂xs

∂us
∂xi

þ B
2

�
∂us
∂xj

∂uj
∂xs

δik þ 2
∂uk
∂xi

∂us
∂xs

�
þ C

�
∂us
∂xs

�
2

δik: (2)

(Here and below, repeated indexes s and j signify summation.)
Taking into account that, for known elastic materials, the Lamé

constants are by several orders of magnitude smaller than the ab-
solute values of the constants A, B, and C, the stress components
from equation 2 can be reduced to
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The equations of motions then have the form,

ρ
∂2ui
∂t2

¼ ∂σik
∂xk

þ Fi; (4)

where t is time and Fi is an external force acting per unit volume.
We assume that the total field u consists of the static component

U arising from an applied static stress and a time-dependent com-
ponent w ¼ wðtÞ, which describes propagating waves

u ≈ Uþ w; (5)

where it is also assumed that the amplitudes of the related static
strains significantly exceed those related to the dynamic field w.
These assumptions allow us to neglect square terms containing
components of w after substitution of equation 5 into equation 3.
Consideration of such terms leads to multiple harmonics generation
(Gol’dberg, 1961; Polyakova, 1964; Korneev et al., 1998). Similar
to the displacement field, the stress components can also be sepa-
rated into static and dynamic parts:

σik ≈ σ̄ik þ ~σik: (6)

Retention of just static stress components in equation 3 gives the
equation,
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where σ̄ik obeys the equation

∂σ̄ik
∂xk

þ Fi ¼ 0; i ¼ 1; 2; 3: (8)

After substituting equation 5 into equation 3 and keeping terms
linear with respect to w, we obtain
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If we solve equation 8 and determine “static strains” ∂Ui∕∂xk,
ði; k ¼ 1; 2; 3Þ, they can then be substituted into equation 9 to arrive
at an equation of motion that is linear with respect to the dynamic
field w,

ρ
∂2wi

∂t2
¼ ∂ ~σik

∂xk
; (10)

which describes a linear anisotropic medium.

UNIAXIAL STRESS

Here, we analyze a uniaxial stress case that leads to a transverse
isotropic (TI) medium. We consider a uniaxial force acting normally
on a plane z ¼ const,

F ¼ ð0; 0; F3Þ; (11)

along the OZ axis. Assuming that the fields do not depend on lateral
dimensions x and y (unbounded case), from equations 7, 8, and 11,
we obtain

ðλþ 2μÞ ∂U3

∂x3
þ 2ðAþ 3Bþ CÞ

�
∂U3

∂x3

�
2

¼ −F3; (12)

which can be solved exactly as a square polynomial, and
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q ≡
∂U3

∂x3
¼ −

λþ 2μ

4ðAþ 3Bþ CÞ

×
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8ðAþ 3Bþ CÞF3

ðλþ 2μÞ2
s �

; (13)

which defines the only nonzero static-strain component. The choice
of the ð−Þ sign before the radical in equation 13 provides obvious
linear solution with respect to the applied force,

q ≈ q0 ¼ −
F3

λþ 2μ
; when

���� 8ðAþ 3Bþ CÞF3

ðλþ 2μÞ2
���� ≪ 1;

(14)

for the case when the nonlinear static deformation is negligible. The
assumption of a linear static strain has been used in all previous
publications on this subject, but as it is demonstrated in the numeri-
cal example below, this assumption is not justified for stresses
caused by an overburden.
For high deformations (large depths) and/or large TOE constants,

the equation has an asymptotic solution,

q≍q∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−F3

2ðAþ 3Bþ CÞ

s
;

when

���� 8ðAþ 3Bþ CÞF3

ðλþ 2μÞ2
���� ≫ 1: (15)

Note that quantity Aþ 3Bþ C should always be negative.
Substituting solutions 13 into equation 8, we obtain the dynamic

stress components,

~σ11 ¼ λðε11 þ ε22 þ ε33Þ þ 2με11

þ 2qððBþ CÞε11 þ Cε22 þ ðBþ CÞε33Þ; (16)

~σ22 ¼ λðε11 þ ε22 þ ε33Þ þ 2με22

þ 2qðCε11 þ ðBþ CÞε22 þ ðBþ CÞε33Þ; (17)

~σ33 ¼ λðε11 þ ε22 þ ε33Þ þ 2με33

þ 2qððBþ CÞε11 þ ðBþ CÞε22
þ ðAþ 3Bþ CÞε33Þ; (18)

~σ13 ¼ 2

�
μþ q

�
A
2
þ B

��
ε13; (19)

~σ23 ¼ 2

�
μþ q

�
A
2
þ B

��
ε23; (20)

~σ12 ¼ 2ðμþ qBÞε12; (21)

where

εik ¼
1

2

�
∂wi

∂xk
þ ∂wk

∂xi

�
: (22)

For a TI elastic media, the stress and strain components have the
relationship, 0

BBBBBB@

~σ11
~σ22
~σ33
~σ23
~σ13
~σ12

1
CCCCCCA

¼ Cαβ

0
BBBBBB@

ε11
ε22
ε33
2ε23
2ε13
2ε12

1
CCCCCCA
; (23)

through the symmetric matrix,

Cαβ ¼

0
BBBBBB@

λ 0 þ 2μ 0 λ 0 λ 0 − l 0 0 0

λ 0 λ 0 þ 2μ 0 λ 0 − l 0 0 0

λ 0 − l λ 0 − l λ 0 þ 2μ 0 −p 0 0 0

0 0 0 μ 0 −m 0 0

0 0 0 0 μ 0 −m 0

0 0 0 0 0 μ 0

1
CCCCCCA
;

(24)

where λ 0 and μ 0 are the effective Lamé parameters of the TI medium
and l, p, and m are anisotropy coefficients. Comparing equation 23
with equations 16–21, we derive the following relationships be-
tween the elastic parameters of TI and the original nonlinear media:

λ 0 ¼ λþ 2qC; (25)

μ 0 ¼ μþ qB; (26)

l ¼ −2qB; (27)

m ¼ −q
A
2
; (28)

p ¼ −2qðAþ 2BÞ: (29)

Thus, the uniaxially stressed nonlinear medium is effectively a TI
medium with parameters given by equations 25–29.
Elastic waves in TI media are a well-studied matter. One P- and

two S-waves can propagate when anisotropy is present, and their
velocities are generally complex functions of elastic moduli. Ac-
cording to Petrashen (1980), in TI media for the particular values
0 and π∕2 of the angle θ between the OZ axis and the direction of
propagation, the velocities of these three waves have simple forms:

V2
Pð0Þ ¼

λ 0 þ 2μ 0 − p
ρ

; (30)

V2
P

�
π

2

�
¼ λ 0 þ 2μ 0

ρ
; (31)

V2
S1ð0Þ ¼ V2

S1

�
π

2

�
¼ μ 0 −m

ρ
; (32)
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V2
S2ð0Þ ¼

μ 0 −m
ρ

; (33)

V2
S2

�
π

2

�
¼ μ 0

ρ
: (34)

All propagation velocities from equations 30–34 depend on the
static stress through the elastic constants, all of which are functions
of parameter q.
Using equation 23, we also can account for the density changes

caused by finite deformation. This can be done using the approxi-
mate formula

ρ ¼ ρ0
1þ 2q

; (35)

where ρ0 is the density in an unstressed state (Hughes and Kelly,
1953). Equation 35 can be solved together with equation 12, giving
a polynomial of the third order. However, numerical evaluations
show that the corresponding changes in velocity do not exceed more
than a few percent, so that such corrections are unnecessary.

OVERBURDEN STRESS

Assume that the uniaxial stress has a gravitational origin. Then,
for constant density material,

F ¼ ρgz; (36)

where g is the gravitational acceleration constant and z is a depth.
The assumption about constant density is not critically important
for the formulation; if the density varies with depth, it should be
integrated along depth in equation 36. From equations 30–34
and 25–29, we have

V2
Pð0Þ ¼ V2

P0 þ
2qðAþ 3Bþ CÞ

ρ
; (37)

V2
P

�
π

2

�
¼ V2

P0 þ
2qðBþ CÞ

ρ
; (38)

V2
S1ð0Þ ¼ V2

S1

�
π

2

�
¼ V2

S2ð0Þ ¼ V2
S0 þ

qðBþ A∕2Þ
ρ

; (39)

V2
S2

�
π

2

�
¼ V2

S0 þ
qB
ρ

: (40)

Remarkably, the nonlinear coefficient Aþ 3Bþ C of a vertically
propagating P-wave is the same as for a nonlinear component
(multiple harmonic) of this wave (Gol’dberg, 1957). Equations 37–
40 suggest that for small deformation, when solution 14 can be
used, the squares of wave velocities are linear functions of depth.
At large depths (and/or strong nonlinearity), when approxima-

tion 15 is valid, the velocities V from equations 37–40 have
depth-dependence in the form,

V ∼ z1∕4: (41)

SHEAR WAVE GENERATION BY
A POINT-PRESSURE SOURCE

The amplitudes of excited elastic waves also depend on static
stress. For the case of a point-pressure source in a TI medium,
P- and S-waves can be generated. Using the result of Kiselev
(2001), we can put the ratio between amplitudes of P- and S-waves
for weak anisotropy in the form

juSj
juPj

¼
�
λ 0 þ 2μ 0

μ 0

�
3∕2 jqðAþ 2BÞj

2ðλ 0 þ μ 0Þ sin 2θ

≈
�
λþ 2μ

μ

�
3∕2 jqðAþ 2BÞj

2ðλþ μÞ sin 2θ; (42)

stating that the amplitude ratio of S- to P-waves is proportional to
the static stress in the medium. However, the results of the next sec-
tion show that anisotropy caused by overburden does not let to con-
sider it as weak.

NUMERICAL EXAMPLES

To evaluate the derived analytical formulas, we use the results
from Suss and Shaw (2003), who analyzed more than 150 sonic
logs and 7000 stacking velocities from industry reflection profiles
at regional scale for the Los Angeles Basin. A comparison of the
average velocity for the areas with variance errors below 0.8 and
a least-squares fit of equation 37 is shown in Figure 1.
Nonlinear static strain q is computed using the exact equation 13.
Assuming VS∕VP ¼ 0.55, the following values for the elastic con-
stants are obtained: λ ¼ 1.9 GPa, μ ¼ 0.97 GPa, Aþ 3Bþ C ¼
−10.8 · 103 GPa. Using the ratios of six independent results for
the measured nonlinear constants in Berea sandstone presented
in Table 3 from Sarkar et al. (2003), we evaluate the nonlinear
elastic constants as A ¼ −1.1 · 103 GPa, B ¼ −2.9 · 103 GPa,
C ¼ −1 · 103 GPa. These values are used in the next numerical
examples.
Figure 2 shows the ratio q0∕q of the linear static strain from

equation 14 to the exact solution 13 of equation 12. Figure 3 shows
the depth-dependence of velocities from equations 37–40. The pre-
dicted ratio between vertical and horizontal velocities as a function
of depth is shown in Figure 4.

0 1 2 3 4 5
Depth [km]

1

2

3

4

5

V
P

ve
lo

ci
ty

[k
m

/s
]

Figure 1. Average velocity model for the Los Angeles Basin (solid
line with marked data points) and the least-squares fit (dashed line)
using equation 37.
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DISCUSSION

Anisotropy in rock can occur not just because of an applied
stress, but also due to structuring on microscopic (clays) and meso-
scopic (sedimentary layering) levels. The combined contribution of
all causes could either reduce or increase the overall effect. How-
ever, only overburden stress is a common phenomenon, which
causes TI anisotropy and exists practically everywhere at all depths.
Evaluation shows (Figures 3 and 4) that such anisotropy can be
significant, reaching several tens of percent and probably more.
This result is consistent with common practices, when stacking
velocity requires extra corrections with a changing offset. This
also implies that, at field scales, all rock is likely to be anisotropic,
and this anisotropy needs to be accounted for during migration
of data, tomography, amplitude-versus-offset analysis, etc. (Bui
et al., 2011).
Nonlinear elastic coefficients can have different relationships

with rock parameters (Brekhovskikh, 1980; Sayers and Kachanov,
1995; Sinha and Kostek, 1996; Prasad and Manghnani, 1997; Sinha
and Plona, 2001; Prioul et al., 2004; Shapiro and Kaselow, 2005;
Sayers, 2006; Koesoemadinata et al., 2010; Gurevich et al., 2011),
depending on rock fracturing, microstructure, and saturation. Inver-
sion of anisotropy in stressed rock (Sarkar et al., 2003) can evaluate

the nonlinear coefficients, which can be interpreted through
assumptions regarding the concrete mechanism of rock nonlinear-
ity. The results of this study can be used for such problems if the
nonlinear rock model obeys equations 2, 3, and 4, i.e., if the defor-
mation is recoverable after a stress release, no hysteretic behavior is
assumed.
In all previous publications on the subject, the assumption of a

small static strain was made to determine the elastic effect caused by
stress. Figure 2 demonstrates that, for overburden stress effects, this
assumption is not justified, and a more accurate solution is needed.
For uniaxial stress, this solution is explicit and given by equation 13.
For more complex external forces, equation 7 can be solved numeri-
cally to find all static stress components, which then can be used in
equation 23. An accurate estimate of static strain is important, not
just for the proper evaluation of velocity changes, but also for
making corrections related to propagation distance change (Fuck
et al., 2011).
Thus, the same rock at different depths might have different

wave-propagation properties. Proper geologic interpretation of seis-
mic velocity maps requires application of local depth corrections
that can remove the overburden-pressure effects. Laboratory veloc-
ity measurements must be corrected as well for nonlinear overbur-
den effects when applied to field scales. Nonlinear rock coefficients
can be determined from special laboratory measurements. They can
also be evaluated by observing nonlinear propagation effects, such
as multiple frequency generation.
The results obtained in this paper for seismic velocities as func-

tions of uniaxial stress differ from those of Hughes and Kelly
(1953), even for small nonlinearity when the solution of equation 13
can be expressed in the linearized form 14. Derivation in Hughes
and Kelly (1953) is very sketchy and lacks some important details.
At the same time, they find that “it is most difficult in this subject to
keep a strict level of accuracy, and several apparent violations occur
in the literature.” Given the lengthy derivations, it is important to
independently verify the final result, if possible.
We believe that the results obtained here are valid, for the follow-

ing reasons. First, the initial equation 2 for stress and the related
equations of motions for an isotropic nonlinear elasticity can be

Depth [km]
0 1 2 3 4 5

0

1

2

3

4

5

V
el

oc
ity

[k
m

/s
]

VP vertical

VP horizontal

VS vertical

VS horizontal

Figure 3. Estimated P- and S-wave velocities induced by overbur-
den pressure.
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tic

al
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 r
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Figure 4. The ratio between vertical and horizontal velocities as a
function of depth for P- (lower curve) and S- (upper curve) waves.

0 1 2 3 4 5
Depth [km]

0
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10

15

Li
ne

ar
/E

xa
ct

Figure 2. Ratio between linearized (equation 14) and exact (equa-
tion 13) solutions for the static strain for uniaxial load.
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found in several standard publications on the subject (Landau and
Lifshitz, 1953; Gol’dberg, 1961; Jones and Kobett, 1963; Taylor
and Rollings, 1964; Zarembo and Krasilnikov, 1966), where they
have been rederived and verified. Second, the effects of stress for
the general (anisotropic) case of elastic nonlinearity are studied by
Fuck and Tsvankin (2009). They used TOE tensors, expressed in
Voigt notations represented by 6 × 6 × 6 matrices. Equations 23–
32 in this paper are verified by comparison with their equation 46
and using the following relationships:

λ ¼ C12; μ ¼ C66; A ¼ 1

2
ðC111 − 3C112 þ 2C123Þ;

B ¼ 1

2
ðC112 − C123Þ; C ¼ 1

2
C123: (43)

Third, the validity of the equations for velocities in a TI medium,
by Petrashen (1980), has been verified by independent authors
(Musgrave, 1970; Helbig, 1994; Tsvankin, 2005).
The presented results indicate that at large depths, depth depend-

ence follows the law V ∼ z1∕4 (equation 41). After analyzing veloc-
ity data from 500 well surveys in the United States and Canada,
Faust (1951) suggests an empirical formula V ¼ 125.3ðZTÞ1∕6,
for average shales and sands, where V is velocity in feet per second,
Z is depth in feet, and T is age in years. Of course, the age factor
positively correlates with depth. On the other hand, we can obtain
V ∼ T1∕6 dependence also by adding cubic terms into the stress-
strain equation, and the application of the fourth-order elastic con-
stants is needed. The relationships (equations 25–29) between the
nonlinear elastic constants and the elastic constants of the effective
TI medium enable estimates of the medium anisotropy induced by
an applied stress, if all velocities are being measured.
Evaluations of S-wave emissions from point-pressure sources

due to overburden pressure cannot make the assumption of weak
anisotropy. Significant S-wave excitation has comparable ampli-
tudes to the P-wave — a well-known problem in explosion
seismology (Leavy, 1993; Imhof and Toksöz, 2000; Liu and
Ahrens, 2001). However, formula 42 (above) was derived from
an assumption of weak anisotropy, and the obtained ratio is likely
to deviate from an exact solution. This problem should be addressed
using numerical methods such as those of Preston and Aldridge
(2011). Solving this problem might enable remote stress measure-
ments using underground explosions.
Finally, the widely used Thomsen (1986) parameters for a weak

TI medium have the following expressions using the coefficients l,
p, and m:

ε ¼ p
λþ 2μ − p

; γ ¼ m
μ −m

;

δ ¼ ðlþ p − 2mÞð2λþ 2μ − l − pÞ
ðλþ 2μ − pÞðλþ μ − pþmÞ : (44)

CONCLUSIONS

The increase in seismic velocity with depth is a common property
of rock, one that can be encountered practically everywhere. Over-
burden pressure increases vertical stress, producing nonlinear elas-
tic responses. Application of nonlinear theory to this problem leads

to transverse isotropy, with relatively simple relationships between
the nonlinear constants and anisotropy elastic coefficients. These
relationships can be used in velocity depth trend removal and in
computing offset-dependent corrections for stacking and migration.
This also implies that realistic tomography models should account
for elastic anisotropy as a basic feature. A proper solution for over-
burden stress requires a full nonlinear solution for static stress
distribution.
It is quite likely that anisotropy resulting from overburden pres-

sure is a common basic property of underground rock. Accounting
for anisotropy properties requires more complex computational and
imaging tools than just isotropic models, which have generally been
in use up to the present. On the other hand, seismic interpretation
can arrive at additional imaging rock parameters (TOE constants),
which can potentially be extracted from anisotropy measurements.
Additionally, the overburden-induced anisotropy is strong enough
to produce shear waves by an explosion.
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